The setup shown in the diagram is used to obtain a variable voltage in between the terminals A and B. R_1 is a resistor with a fixed resistance while R_2 indicates a Rheostat.

A variable voltage is obtained by moving the slider in the Rheostat. The internal resistance in the 9 V accumulator can be neglected and the total resistance of R_2 is 100 Ω .

(a) If you have been told to use the Rheostat given below as the symbol R_2 , to which terminals of the Rheostat should the A, B and C points in the above circuit be connected? Show that by marking the relevant terminals as A, B and C.

How would the current through the circuit would change, when the slider is moved up and down? Explain your answer.		
What is the minimum voltage that can be obtained across A and B ?		
Calculate a suitable value for R_1 in order to obtain a 5 V voltage in between A and B .		

Two graphs were drawn by a student by measuring the variation of V_{AB} with the resistance between A and B (R_{AB}) with two different voltmeters, V_X and V_Y . Which voltmeter is more suitable to measure the voltage across A and B ? Explain your answer.	V _{AB} \(\sum_{V_Y}\)
	R _{AB}
When the accumulator was replaced with a 9 V cell while tained in part (d) above, the maximum voltage that can down to 4.5 V from 5 V. What is the most probable reason	be obtained across AB reduced
Based on the data given in part (f) above, calculate an imp	nortant narameter in the Q V cell
If you need to maintain a constant voltage across AB fo setup, explain why the current flowing through the circuit values for R_1 and R_2 .	r a long period of time with this